Int. J. Heat Mass Transfer. Vol. 35, No. 7, pp. 1779-1786, 1992

Printed in Great Britain

0017-9310/92 $5.00+0.00
© 1992 Pergamon Press Lid

Conjugate gradient method for determining
unknown contact conductance during metal casting

C. H. HUANG, M. N. OZISIK and B. SAWAF

Mechanical and Aerospace Engineering Department, North Carolina State University,
Raleigh, NC 27695-7910, U.S.A.

(Received 18 October 1990 and in final form 4 June 1991)

Abstract—The air-gap formation between the casting and the metal mold during the casting of metals
creates a thermal resistance that reduces the heat transfer and solidification rates. In this work, the inverse
solution methodology based on the conjugate gradient method is developed for estimating the variation of
air-gap resistance with time from the transient temperature measurements taken with thermocouples inside
the casting region and at the outer mold surface. The advantage of the conjugate gradient method is that
there is no need to assume a specific functional form for the unknown quantity beforehand, since the
solution automatically determines the functional form over the domain specified. Furthermore the method
is stable and converges over an order of magnitude faster than the least square method.

1. INTRODUCTION

SEVERAL early studies of casting of metals in metal
molds recognized the existence of an interface resist-
ance to heat flow at the mold—casting interface, and
assumed the presence of a constant interface resistance
throughout the solidification process. However, later
studies revealed considerable variation of the interface
resistance with time as solidification progressed. A
discussion of the problems of air-gap formation at the
mold-—casting interface and some experimental results
on the interface resistance can be found in refs. [1-
5]. An inverse analysis of heat conduction involving
phase change is essential for accurate determination
of air-gap resistance from the transient temperature
measurements taken inside the casting region and at
the outer mold surface.

Some work has been reported on the inverse analy-
sis of solidification [6-10]. In a recent work [10], the
least squares approach is used together with the
Levenberg-Marquardt method to determine the con-
tact conductance at the mold—casting interface. Such an
approach required a reasonably close first estimate of
contact conductance for the solution to converge,
even though only four parameters were estimated. In
this work, we present the conjugate gradient method
which converges very rapidly and is not sensitive to
the measurement errors.

The conjugate gradient method, by utilizing the
ideas based on the variational principles [11, 12],
transforms the inverse problems to the solution of
three simple problems called the direct problem, the
sensitivity problem and the adjoint problem together
with the gradient equation. In Section 2, the math-
ematical formulation of the inverse problem is given ;
Sections 3 and 4 deal, respectively, with the solution
of the sensitivity problem for the functions AT, (x, ¢)
and AT.(x, t) and the adjoint problem for the func-
tions 4,(x, ) and A,(x, 7). In Section 4 the conjugate

gradient method is applied to determine the timewise
variation of the unknown contact conductance A.(t)
at the mold—casting interface.

2. PROBLEM FORMULATION

The liquid region is initially at a uniform saturated
temperature, T,,. For time ¢ > 0 the solidification
takes place as a result of convective cooling applied
at the mold surface and the solid-liquid interface
moves in the positive x direction. Figure 1 shows the
geometry and coordinates.

Assuming constant properties, the mathematical
formulation of this one-dimensional solidification
problem is given by :

Mold region
0*To(x, 1) 0T, (x, 1)
k, ar Gy, O0<x<b,t>0
(1a)
01,0, ¢t
—ka =h,(T,—T,) at x=0,1>0
Ox
(1b)
Mold / v on
Casting
T XT)
T, By g _
1 J 2 .
0 b a X

F1G. 1. Geometry and coordinates.
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unknown contact conductance at the
mold-casting interface

J(#)  functional defined by equation (3)

J(ty gradient of the functional defined by
equation (10}

k thermal conductivity

P*  direction of descent at the kth

iteration

NOMENCLATURE

B step size in going from A to 47", in
equation {11}

ok conjugate coeflicient, defined by equation
(13)

& Dirac delta function

& convergence criteria

A{x, 1) adjoint function satisfying the
adjoint problem defined by equations (&)

T{x,7} estimated temperature and (9)
AT(x,1) sensitivity function satisfying the g standard deviation of temperature
sensitivity problem defined by equations measurement
(4) and (5) © random number.
Y(x,t) measured temperature.
Subscripts
Greek symbols c casting region
% thermal diffusivity P mold region.
k, ?‘lf"%—b 3] —Ta=T)) at x=51>0 (Io) 3. THE SENSITIVITY PROBLEM
X The solution of the problems (1) and (2) with con-
T,(x.0)=T, for =0, in O<x<h (1d) tact conductance %.(f) unknown, can be recast as a

where C, = p,e¢, is the heat capacity per unit voiume,
p, and ¢, arc the density and the specific heat of the
plate (i.e. mold), respectively.

Casting region

To alleviate the tracking of the moving interface,
the enthalpy form of the energy equation is used for
the casting region

&> T.{x, AH (x, 1
f-—» q(,ii) = p. v(_i{:(x"() in b<x<ai>0
X7 [
(2a)
oT.(b,
— k. p~%—~ : l) =h(NT,—T.) at x=5ht>0
(2b)
T.(a,t ;
e —ﬂ(f ) =0 at x=a1>0 (2¢)
T, 0)=T, for =0, in b<x<a (2d)

where dH, = ¢. dT, is the enthalpy of the casting
material, ¢, and p, are the specific heat and the density
of the casting region, respectively, while T, is the
temperature of the saturated liquid.

The inverse analysis utilizing the conjugate gradient
method requires the solution of direct, sensitivity and
adjoint problems together with the gradient equation.
The direct phase-change problem could be solved by
using the standard enthalpy method {13]. The devel-
opment of sensitivity and adjoint equations and their
solutions are discussed next.

problem of optimum control, i.e. choose the control
function A.(f) such that it minimizes the following
functional

&

JhAD) = f

;=

. (T, =Y +(T,—Yy)’1dr (3)

where 7, and Y, are the estimated and measured
temperatures, respectively, at the outer mold surface
{(i.e. x = x,) as shown in Fig. 1. Similarly, 7, and ¥,
are the estimated and measured temperatures, respec-
tively, in the casting region at a distance Ax, away
from the interface (i.e. x = x,). If an estimate is avail-
able for /.(f), the temperatures 7, and T, can be
computed from the solution of the direct problem
defined by equations (1) and (2).

It is assumed that when A7) undergoes an
increment Ah.(7). then the temperatures T.{(x, f)
T.(x, ) and enthalpy H_.(x, ¢} change by an amount
AT,, AT, and AH_, respectively. To construct the sen-
sitivity problem satisfying the functions AT, AT, and
AH,, we replace T, by T, +AT,, T. by T.+AT, H,
by H.+AH, and A, by &+ Ah, in the direct problems
{1) and (2) and then subtract from it the original
problems (1} and (2). The following sensitivity prob-
lem is obtained for the determination of the functions
AT, and AT, in the mold and casting regions, respec-
tively.

Mold region
AT (x, 1) AT, (x, 1)
kp~——8§~:———- =C, -———(‘;T«w 0<x<bt>0

(4a)
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5AT (0, t)

k, —h AT (0,) at x=0,1>0
dx
(4b)
py{%@ = B (WAT, = AT )+ AR (T, —T,)
at x=25,t>0 (4)
AT, (x,0) =0 for t=0,0<x<bh (4d)
Casting region
E PAT.(x,1)  0AH.(x, t} aAT {x, 1)
< axz - pc 6: c 5!

in b<x<a1>0 (5a)

L OAT.(b,1) h(D)(AT, — AT +Ab ()T, — T,)

T ey
at x=b,t>0 (5b)
JAT (a, 1) _
*’*‘"‘—a—‘x———*—o at x~a,t>0 (SC)
AT (x,0)=0 or AH(x,0)=0
for t=0b<x<a (3d)

Note that, in equation (5a) we replaced AH, with
its equivalent ¢, AT, since this is not a phase change
problem; therefore equations (4) and (5) can be
solved with the standard finite difference techniques.

4. THE ADJOINT PROBLEM

To derive the adjoint equation we multiply equa-
tions (1a) and (2a) with the adjoint functions 4, (x, 1)
and A;(x, #), respectively, integrate the resulting
expression over the total time 4 and the total space
domain 0 < x < b and b < x < g and then add this
result to the functional given by equation (3). The
following expression results :

0= [ (@ v

T ﬁT
Jj Oi(x:)[paz—— a}mz
ff A;,(xz}[”

5 2
The variation AJ{r) of equation (6) is then obtained
by the variation principle [11, 12] as follows

——caZIdd: (6)

1 s
AJ(t) = f j AT~ Y)AT,(x,)8(x—x,) dxdt
=0 Jx=0

+f f 2T, — Y )AT (x, Ho(x—x,) dxdr
=0 Jx=b

2
ff Al(xt)[paaAZ aAT]d 4

ot
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O*AT,

Z(xf)[caz P37 ddt

N J‘zf J‘a
= 0 Jx =
0

where 8(x) is the Dirac delta function, x, and x, are
the locations of thermocouples. The last two integral
terms in equation (7) are integrated by parts and
the boundary conditions of the sensitivity problem
defined by equations (4) and (5) are utilized to obtain
the following coupled adjoint problem given by equa-
tions (8) and (9) and the gradient equation (10).

AH, ]

Mold region
%A {(x, 1) 0hi(x, 1)
k= g+ G AT~ Y) =0
in 0<x<bt>0 (8a)
a4 4,(0,0) t)
—k,~- T —ho 40, at x=0,r>0
(8b)
ky 5118(,5’ z) =h{{A;—4) at x=5b1>0 (8¢)
Ax,t) =0 for t=1t, In 0<x<h (8d)
Casting region
82 ,{x, O 84y (x, 0
k. p +C, 2 +2{T,—Y) =0
n b<x<at>0 {(92)
6226(b_tz =h, @) (A —4y) at x=b,t>0
(9b)
0Ay(at) _
T_O at x=4a,1>0 (9¢c)
Alat)=0 for t=¢, in b<x<a  (9d)

Gradient equation
The gradient equation for the functional, J(s), is
given in the form

() = [A2(6, ) = 4, (b, DN T, (b, ) = To (b, 0].  (10)

Note that the problems (8) and (9) are not the phase
change problem, therefore they can be solved with the
standard finite difference techniques.

5. INVERSE SOLUTION BY CONJUGATE
GRADIENT METHOD

In this section an algorithm is presented for solving
the inverse heat conduction problem described pre-
viously with the conjugate gradient method. The
method is stable and converges very fast if some infor-
mation is available for the final time condition of the
unknown function A.(#). In this study, an estimate
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is made for the final time condition of #.(#) in the
following manner.

The mold region being very thin, we assume a linear
variation of temperature (i.c. constant temperature
gradient) within the mold for each time step and com-
pute the gradient 07,/0x using equation (1b) and the
measured data Y, at x = x,. Knowing this gradient,
the interface temperature is determined from equa-
tions (I¢), (2b) and the measured data Y, at x = x,
is considered available. One can use either of the equa-
tions (lc) or (2b) to determine a first estimate of
the final time condition of the contact conductance
h(t;) = h(1).

The following iterative procedure [11] is used for
the determination of the contact conductance

BV = B BPY k=0.1.2.... (1D

where the direction of descent P* is determined from
the following relation

Pr =k P (12)

here P* ' is the value of P at step k—1 and J™* is the
value of the gradient of the functional at step k.

Different definition of the conjugate coefficient »*
can be found in the standard texts on mathematics,
we choose the form [14, 15]

j AP de
0= 0 :
"}'k _ v, with Vﬂ = 0.

= (3)
_( [J5 o) dr
[
The coefficient f*, which determines the step size in
going from A to A ' in equation (11) is obtained by
minimizing J(h5* ') with respect to . i.e.

7,

{[Tl(hﬁ '"ﬁkpk)’“ Yx]Z

t— 0

m/fin JHEY = mﬁmj’

+[Ta(he =Py —¥,)2) dr. (14a)

First, the Taylor series expansion is used to linearize
the right-hand side of this expression in the form
“I

{(IT\(H) — B AT (PH =Y\ ]?

¢ = &

min J(ATHY = minj‘
I B

+[Ty () — BEAT,(PY) = Y2} du

Then equation (14b) is minimized by differentiating it
with respect to f* and equating it equal to zero. After
rearrangement, the following expression is obtained
for step size B

(14b)

J (AT(PYIT (R~ Y]

+AT(POIT(H) — Y} dr (15)

j [AT2(P*)+AT3(P*)] dt

=0

C. H. HuaNG ef df.

The final time condition A.(f;) determined as
described above, i.e. A2(1) = h.(t;) is used to start the
iterations.

Once P* is computed from equation (12) and
trom equation (15), the iterative process defined by
equation (11) can be applied to determine 4:*' until
a specified stopping criterion based on the discrepancy
principle described below is satisfied.

Discrepancy principle for stopping criteria
1f the problem involves no measurement errors, the
traditional check condition specified as [16]

JHET Y < ¢,

(16)

where ¢, is a small specified number, could be used.
However, the observed temperature data contain
measurement errors; as a result, the inverse solution
will tend to approach the perturbed input data and
the solution will exhibit oscillatory behavior as the
number of iterations is increased [11]. Compu-
tational experience shows that it is advisable to use
the discrepancy principle [17, 18] for terminating the
iteration process. The discrepancy principle that
establishes the value of & from cquation (3) by
assuming (T, —Y,) = (7T,—Y,) = 0. is given in the

form
1‘—
2j gldt=¢?
oo

where o is the standard deviation of the measurement
error. This value of ¢ is then used as the stopping
criterion, i.e.

{17a)

JOET Yy < &7 (17%)

6. THE ALGORITHM

The algorithm for the computational procedure of
the iterative scheme starting from the kth iteration is
summarized as:

STEP (1) #*{r) is available at the kth iteration. Solve
the direct problem given by equations (1) and (2) and
compute T,(x, 1} and T(x, 1).

STEP (2) Knowing T,(x, 1), T.(x, {) and measured
temperatures Y,. Y,, solve the adjoint problem
defined by equations (8), (9) and obtain the adjoint
variables 4, (x, 1) and A,(x, #).

STEP (3) Knowing 4,(h, 1), 2,(b. 1}y and T,{b, 1),
7.(b, 1), compute the gradient of the functional, J7{1),
from equation (10).

STEP (4) Knowing J'(#), first compute y, from
equation (13) and then compute the direction of
descent P* from equation (12).

STEP (5) Knowing the direction of descent P,
solve the sensitivity problem given by equations (4),
{(5) and determine the sensitivity functions AT (P
and AT,(PY).

STEP (6) Knowing AT, (P*) and AT,(P¥), com-
pute step size f* from equation (15).
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STEP (7) Knowing step size *, compute new con-
tact conductance A<+ (¢) from equation (11).

STEP (8) Check if the stopping criterion given by
equation (17) satisfied.

STEP (9) If not, repeat the above calculational
procedure until the stopping criterion given by equa-
tion (17) is satisfied.

7. RESULTS AND DISCUSSIONS

To illustrate the accuracy of the present approach in
predicting A:(f) with inverse analysis, we first examine
two very strict test cases involving a triangular and a
step contact conductance function and then examine
the case studied in ref. [10].

Here we consider the mold and casting are initially
at constant temperatures T, and T,, respectively, and
the thermal properties of the liquid and solid phases
are constant and equal. The following physical quan-
tities are used in the calculation [10}:

kp=388Wm“°C" k.=213Wm~'°C™!
c, =4031] kg='°C™' ¢, =1210Jkg~'°C™!
pp=8%40kgm™* p.=2700kgm™?

he=2000Wm 2°C™"' T, =20°C b=6x10"m

a=0206m L=402x10°Tkg~' T, = 660°C.

The total measurement is taken over a period of 80 s
with the measurement time step, Az = 1 s. Thus 80
temperature readings per thermocouple over the total
measurement time. The space steps for mold region,
Ax,, and for casting region, Ax,, are taken as 3 x 10 ~?
m and 1.6 x 1073 m, respectively. One thermocouple
is placed at the outer surface of the mold and the
other is located inside the casting region at a location
1.6 x 10~ * m from the interface.

The measured temperature data, Y, are generated
by adding a standard deviation ¢ to the simulated
exact temperature, given by

(18)

where the random variable w is calculated by the
IMSL subroutine DRNNOR [19]. In the present cal-
culation the range of w is chosen as —2.576 <
o < 2.576 which represents the 99% confidence
bound for the measurement temperature.

We present below three numerical experiments in
predicting the timewise variation of 4.(¢) by inverse
analysis

Case 1. Triangular jump in #.(?).

The interface contact conductance A (f) is assumed
to vary in the form

Ymeasured = Yexact +wo

300+ 15¢ 0

AN
A

<20
80
h(t) = 200—7(t—55) 20155 (19)

200 55<t

VAN

80
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which represents a triangular function with the jump,
h.(0) = 300,atr=0.

The inverse solutions for ¢ = 0.0 (exact), ¢ = 1.0
and ¢ = 2.0 are obtained by the conjugate gradient
approach as shown in Figs. 2, 3 and 4, respectively.
With no measurement error, the estimated contact
conductance is very close to the exact value as given

700

600

w
m?-°C

500 1

400

300 4

Contact conductance, h(t),

200 -

100 T T T
0 20 40 60 80
time , sec
F1G. 2. Estimated contact conductance for case 1 with no
measurement errors.

700
— Exact
o 600
3 )
k|
& 500
=g 4
o
§ 400 4
g E
!é 300 -
g
5 2004
100 T T T
0 20 40 60 80
time , sec
FiG. 3. Estimated contact conductance for case 1 with
measurement errors o = 1.0.
700
— Exact
& 600 4
B
B
2 500
g
g 400 -
=]
E 300
8
=
8 200
100 T T T
0 20 40 60 80
time , sec

FiG. 4. Estimated contact conductance for case 1 with
measurement errors ¢ = 2.0.
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—— Exact
3 & 600 —ry Estimated
& =00
% 400+
o
g
5 2004
E
(=}
©
g
=4 04 —
o
S
-200 — e T T
0 20 40 60 80
time , sec

F1G. 5. Estimated contact conductance for case 2 with no
measurement errors.

in Fig. 2. As measurement error is included, the accu-
racy of the inverse solution decreases, as shown in
Figs. 3 and 4. We note that, even with ¢ = 2.0 the
results are still good as shown in Fig. 4.

Case 2. Step function variation in A (7).

The interface contact conductance 4.(¢) is assumed

in the form
600 0<¢
he(t) = {o 40 <

40

R0 (20)

<
<
which is a step jump function with 4.(0) = 600 at f = 0
and represents a very strict test for the accuracy of the
prediction.

The inverse solutions for o = 0.0 (exact) and ¢ = 1.0
are shown in Figs. 5 and 6, respectively. For the case
o = 0.0, slight deviation of the results occurs at the
sharp corners only, but the agreement is very good
for the rest of the function. Results are still good for
the case 0 = 1.0.

Case 3. A polynomial variation in A (1).

To compare the conjugate gradient method with
the least square method utilizing the Levenberg-
Marquardt algorithm, the interface conductance 4 ()

800
——— Exact
n Fod 2 .
3°L.) 600 e AP Scurn ool X Estimated
o 4\
B H c=10
5 AOOW
g
L
i2)
3 200
z :
o H
o b
g 3 . Py S
£ 01 o g et S
o]
-200 | e T T
0 20 40 60 80
time , sec

FiG. 6. Estimated contact conductance for case 2 with
measurement errors ¢ = 1.0.
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700
w 600 ——  Exact contact
ES Z conductance
g
]
2
K
o
3
g
[=
S
Tl © ;
4/ P |
T T T Al '}

40 60 80

time , sec

F1G. 7. Variation of i.(¢) with time.

is assumed to be a cubic polynomial in time, given in
the form [10]

h(l) = A+ Ayt+ A7+ A7 for 1<1, (2la)
and

h(t) =h, for =1, (21b)
where the coefficients 4,. i = 1, 4 are established by

the following requirements based on some physical
considerations

h()=h, at 1=0 (22a)
oh.(1) .
= a =T, (22b)
h()="h, at (=1, (22¢)
) o = 22d

o = at =1, (22d)

The physical significance of the four parameters 4,,
hy, 7, and 1, is illustrated in Fig. 7. The values of
these four parameters characterizing the interface con-
ductance A (1) are taken as b, =50 W m 2 °C~',
h,=200Wm~2°C"!, 7, =20sand t, = 55s. Figure
8 shows our prediction of the functional form of 4 (1)

700

600

w
m?-°C

500

400

300

Contact conductance, h(t),

Q 20 40 60 80

time , sec

Fic. 8. Estimated contact conductance for case 3 with
measurement errors ¢ = 1.0.
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by the conjugate gradient method for the case o = 1.0
and its comparison with the exact values of A.(%).
Clearly, the prediction is in excellent agreement with
the exact A (7).

The foregoing comparison shows that the function
estimation approach utilizing the conjugate gradient
method requires less computer time, no a priori
assumption in the functional form of the unknown
quantity and the method is less sensitive to the
measurement errors.

In the function estimation approach considered
here a total of 80 unknowns are estimated to establish
the unknown function, whereas in the least squares
method four parameters were used to represent the
function. The computer time requirement with the
present approach was an order of magnitude less than
that for the least squares method.

8. CONCLUSION

The conjugate gradient method which utilizes the
function estimation approach is used to solve the
inverse solidification problem to determine the
unknown timewise variation of the contact con-
ductance between the mold and casting region. The
results show that the conjugate gradient method
requires much less computer time than the least squares
method, less sensitive to the measurement errors and
does not require a prior information for the func-
tional form of the unknown quantity.
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METHODE DES GRADIENTS CONJUGUES POUR DETERMINER LA CONDUCTANCE
INCONNUE DE CONTACT PENDANT LE MOULAGE D'UN METAL

Résumé—La formation d’un matelas d’air entre le métal et le moule pendant la coulée crée une résistance
thermique qui réduit les transferts thermiques et les vitesses de solidification. On développe la méthodologie
de solution inverse basée sur la méthode des gradients conjugués pour estimer la variation de la résistance
variable du matelas d’air 4 partir des mesures de température avec des thermocouples dans la région liquide
et & la surface du moule externe. L’avantage de cette méthode est de ne pas supposer une forme fonctionnelle
de la grandeur inconnue, puisque la solution détermine automatiquement la forme fonctionnelle sur le
domaine spécifié. La méthode est stable et elle converge sur un ordre de grandeur, plus vite que la méthode
des moindres carrés.
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EIN VERFAHREN MIT KONJUGIERTEN GRADIENTEN ZUR BESTIMMUNG DES
UNBEKANNTEN KONTAKTWIDERSTANDES BEIM GIESSEN VON METALLEN

Zusammenfassung—Beim GieBen von Metallen entsteht durch die Ausbildung eines Luftspaltes zwischen
der Gufiform und dem flissigen Metall ein thermischer Widerstand. der den Warmeiibergang und die
Verfestigungsgeschwindigkeit reduziert. In der vorliegenden Arbeit wird auf der Grundlage des Verfahrens
der konjugierten Gradienten eine umgekehrte Methode zur Bestimmung der zeitlichen Verdnderung des
Widerstandes durch den Luftspalt entwickelt. Die Grundlage dafir bildet die Messung der zeitlich ver-
dnderten Temperaturen mit Hilfe von Thermoelementen im GuBgebiet und an der duBeren Oberfliche der
GubBform. Der Vorteil des Verfahrens mit konjugierten Gradienten besteht darin, daB nicht von vornherein
eine spezielle Funktionsform fiir die unbekannte GroBe angenommen werden muB. Diese Form ergibt sich
automatisch fir den angegebenen Bereich. Dariiberhinaus ist das Verfahren stabil und konvergiert um
GroéBenordnungen schneller als die iibliche Fehlerquadratmethode.

METO/1 CONPSIDKEHHBIX T'PAJUEHTOB [1I1 ONIPEAEJNEHUSA KOHTAKTHON
MPOBOAUMOCTHU B IMPOLECCE JINThS METAJIJIOB

AwnnoTaums—OGpa3osaHie BO3AYIIHBIX 3130POB MEXY OTJIMBKOR M KOKHJIEM B IPOLECCE JIMThs METAI-
JIOB CO3AAET TEIUIOBOE COMPOTHBIIEHHE, CHIXAIOLIEe CKOPOCTH TEIUIONEPEHOCa U 3aTBepAcBanus. B nac-
TOSMIEM HCCJIEIOBAaHMKM pa3paboTaHa METOIOMKA pellicHHA OOpaTHOH 3aJaid Ha OCHOBE METOJa
CONPSXEHHBIX I'PALMCHTOB, O3BOJIAIOIAS OLCHHTL H3MEHEHHE CONPOTHBJIEHHS BO3RYLIHBIX 3a30pOB CO
BpEMEHEM HCXOJISl M3 M3MEPEHHMIl TEMIEPATYPHI C HCIIOJIb30BAHUEM TEPMONAP, MOMENIEHHBIX B 06JI4CTH
OTJIMBKM M Ha BHElWIHed rpaHuue Kokuis. [IpeMMyniecTBO NMpeasioKEHHOTO METOAA COCTOMT B OTCYTCT-
BHH HEOOGXOMMMOCTH MpPEeABAPHTENLHOTO NPEANOIOKEHHS O KOHKPETHOH QYHKIMOHANLHON PopME HeH3-
BECTHON BEJIMYAHBI, IOCKOJbKY DELUEHHE aBTOMATHYECKH OMpelelseT ce B 3ajaHHOH obnactu. Kpome
TOFO, HCTIONBL3YEMBbli METOI SBASETCS YCTOMMMBBIM H CXOJUTCA HA MOPAAOK GBICTpee, YeM METOA HaM-
MEHBIIIHX KBaAPATOB.



