
hr. J. Hror Muss Trmfer. Vol. 35, No. 7, pp. 1779-1786, 1992 0017-9310/92$5.00+0.00 

Printed in Great Britain c> 1992 Pergamon Press Ltd 

Conjugate gradient method for determining 
unknown contact conductance during metal casting 

C. H. HUANG, M. N. OZISIK and B. SAWAF 
Mechanical and Aerospace Engineering Department, North Carolina State University, 

Raleigh, NC 27695-7910. U.S.A. 

(Received 18 October 1990 and injnalform 4 June 1991) 

Abstract-The air-gap formation between the casting and the metal mold during the casting of metals 
creates a thermal resistance that reduces the heat transfer and solidification rates. In this work, the inverse 
solution methodology based on the conjugate gradient method is developed for estimating the variation of 
air-gap resistance with time from the transient temperature measurements taken with thermocouples inside 
the casting region and at the outer mold surface. The advantage of the conjugate gradient method is that 
there is no need to assume a specific functional form for the unknown quantity beforehand, since the 
solution automatically determines the functional form over the domain specified. Furthermore the method 

is stable and converges over an order of magnitude faster than the least square method. 

1. INTRODUCTION 

SEVERAL early studies of casting of metals in metal 
molds recognized the existence of an interface resist- 
ance to heat flow at the mold-casting interface, and 
assumed the presence of a constant interface resistance 
throughout the solidification process. However, later 
studies revealed considerable variation of the interface 
resistance with time as solidification progressed. A 
discussion of the problems of air-gap formation at the 
mold-casting interface and some experimental results 
on the interface resistance can be found in refs. [l- 
51. An inverse analysis of heat conduction involving 
phase change is essential for accurate determination 
of air-gap resistance from the transient temperature 
measurements taken inside the casting region and at 
the outer mold surface. 

Some work has been reported on the inverse analy- 
sis of solidification [6-lo]. In a recent work [lo], the 
least squares approach is used together with the 
Levenberg-Marquardt method to determine the con- 
tact conductance at the mold-casting interface. Such an 
approach required a reasonably close first estimate of 
contact conductance for the solution to converge, 
even though only four parameters were estimated. In 
this work, we present the conjugate gradient method 
which converges very rapidly and is not sensitive to 
the measurement errors. 

The conjugate gradient method, by utilizing the 
ideas based on the variational principles [ll, 121, 
transforms the inverse problems to the solution of 
three simple problems called the direct problem, the 
sensitivity problem and the adjoint problem together 

with the gradient equation. In Section 2, the math- 
ematical formulation of the inverse problem is given ; 
Sections 3 and 4 deal, respectively, with the solution 
of the sensitivity problem for the functions AT,(x, t) 
and AT,@, t) and the adjoint problem for the func- 
tions 1,(x, t) and Lz(x, t). In Section 4 the conjugate 

gradient method is applied to determine the timewise 
variation of the unknown contact conductance h,(t) 
at the mold-casting interface. 

2. PROBLEM FORMULATION 

The liquid region is initially at a uniform saturated 
temperature, T,,,. For time t > 0 the solidification 
takes place as a result of convective cooling applied 
at the mold surface and the solid-liquid interface 
moves in the positive x direction. Figure 1 shows the 
geometry and coordinates. 

Assuming constant properties, the mathematical 
formulation of this one-dimensional solidification 
problem is given by : 
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FIG. 1. Geometry and coordinates. 
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NOMENCLATURE 

f&(l) unknown contact conductance at the P step size in going from 17: to ht.- ‘, in 
mold-casting interface equation (1 I) 

J(t) functional defined by equation (3) ;‘” conjugate coefficient, defined by equation 
J’(t) gradient of the functional defined by (17) 

ey uation (I 0) (5 Dirac delta function 
k thermal conducti~ty 1: convergence criteria 
P” direction of descent at the lath i.(.r, f) adjoint function satisfying the 

iteration adjoint problem defined by equations (8) 
T(x, t) estimated temperature and (9) 
AT(x, t) sensitivity function satisfying the CT standard deviation of tempe~ture 

sensitivity problem defined by equations measurement 
(4) and (5) (0 random number. 

Y(x, t) measured temperature. 
Subscripts 

Greek symbols c casting region 
r thermal diffusivity P mold region. 

T&r, 0) = T, for I = 0, in 0 < s ,< h (Id) 

where C, = pPcP is the heat capacity per unit voiume, 
pP and cP arc the density and the specific heat of the 
plate (i.e. mold& respectively. 

To alleviate the tracking of the moving interface, 
the enthalpy form of the energy equation is used for 
the casting region 

GW 

c’T,(a, t) 
-- = 0 at x ‘= iI, t > 0 

?s 
(26) 

T,(.u,O) = T,,, for t = 0. in 5 < x < 0 (2d) 

where dH, = cC dT, is the enthaipy of the casting 
material, cC and pc are the specific heat and the density 
of the casting region, respectively, while T,,, is the 
temperature of the saturated liquid. 

The inverse analysis utihzing the conjugate gradient 
meihod requires the solution of direct, sens~tiviiy and 
adjoint problems together with the gradient equation. 
The direct phase-change problem couid be solved by 
using the standard enthaipy method f13]. The devel- 
opment of sensitivity and adjoint equations and their 
solutions are discussed next. 

3. THE SENSlTlVlTY PROBLEM 

The solution of the problems (I) and (2) with con- 
tact ~ondL~ctan~ h,(t) unknown, can be recast as a 
problem of optimum control, i.e. choose the control 
function h,(r) such that it minimizes the following 
functional 

If ~(~?~(~)) = 
i 

f(T, - Y,)“+fTZ- Y?)*] dr (3) 
i = 0 

where T, and Y, are the estimated and measured 
temperatures, respectively, at the outer mold surface 
(i.e. s = x,) as shown in Fig. 1. Similarly, T, and YZ 
are the estimated and measured temperatures, respec- 
tiveiy, in the casting region at a distance Ax, away 
from the interface (i.e. x = x1). lfan estimate is avaiI- 
able for /z,(t), the temperatures T, and T2 can be 
computed from the solution of the direct problem 
defined by equations (1) and (2). 

It is assumed that when /r,(t) undergoes an 
inurement Ah,(r). then the temperatures T,,(.u, t). 
T,(x, t) and enthalpy H,(s, t) change by an amount 
AT,, AT, and AH,, respectively. To construct the sen- 
sitivity problem satisfying the functions AT,, ATC and 
AH,, we replace T, by T,+AT,, T, by T,+AT,, iFr, 
by Hc + AH, and h, by h, + Ah, in the direct probIems 
(1) and (2) and then subtract from it the original 
problems (f) and (2). The following sensitivity prob- 
lem is obtained for the determination of the functions 
AT, and AT, in the mold and casting regions, respec- 
tively. 
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_k aAT,@, 4 
P ax 

= -h,AT,(O,t) at x= O,t>O 

(4b) 

k  aAT,@, 6 
P ax 

= h,(t)(AT,-AT,)+Ah,(t)(T,-T,) 

at x=&t>0 (4c) 

AT&O) = 0 for t = 0,O G x < b. (44 

Castirzg region 

in h<x<a,E>O (Sa) 

at x=&t > 0 (5b) 

aAK(a, 0 
8X 

=0 at x= a,t > 0 (54 

AT&O) = 0 or AH,(x,O) = 0 

for t=O,b<x,<a. (5d) 

Note that, in equation (5a) we replaced AH, with 
its equivalent c,AZ’,, since this is not a phase change 
problem; therefore equations (4) and (5) can be 
solved with the standard finite difference techniques. 

4. THE ADJOINT PROBLEM 

To derive the adjoint equation we multiply equa- 
tions (la) and (2a) with the adjoint functions i, (x, t) 
and 2,(x, t), respectively, integrate the resulting 
expression over the total time tr and the total space 
domain 0 < x < 6 and b < x < a and then add this 
result to the functional given by equation (3). The 
following expression results : 

+ J(t) = 
s 

[(T, -Y,)*+(T,-- Y,)‘]dt 
r=0 

The variation AJ(t) of equation (6) is then obtained 
by the variation principle [I I, 121 as follows : 

AJ(t) = 2(T, - Y,)AT&, t)S(x-x,) dxdt 

2(T,- Y,)A&(x, t)ii(x-x,)dxdt 

PAT 
k”+ -C 

aAT 
P+ dxdt 1 

where 6(x) is the Dirac delta function, x, and x2 are 
the locations of thermocouples. The last two integral 
terms in equation (7) are integrated by parts and 
the boundary conditions of the sensitivity problem 
defined by equations (4) and (5) are utilized to obtain 
the following coupled ac$oint problem given by equa- 
tions (8) and (9) and the grad~nt equation (IO). 

Mold region 

k a22 I(& 0 __.- 
p ax* 

+c an,cGt) 
P 
~ +2(T,-Y,)= 0 

at 

in 0 <x < 6,1> 0 (8a) 

_fpg.!2 = -h,1,(0,t) at x = 0,t > 0 

(8b) 

k aa, ~ = hcft)(A2-d,) at x = 6, t > 0 p ax (8cf 

A,(x,t,)=O for t=tr, in O<x<b. (8d) 

Casting region 

k a*a2k t) +c an,(x, t) 
c ax* 

~ -I-2(T*- Y*) = 0 c at 

in b < x < a,t > 0 (9a) 

_k aJ*(h 0 
c-- = h,(t)(A, --A,) 

dX 
at x = b, t > 0 

PW 

aA2(a, 0 
-=O at x=a,t>O 
ax (94 

1,(x, tf) = 0 for t = tf, in b Gx < a. (9d) 

Gradient equation 
The gradient equation for the functional, J(t), is 

given in the form 

J’(0 = [~z(~,t)-~,(~,~)l[~,(~,t)-T,(~~t)l. (10) 

Note that the problems (8) and (9) are not the phase 
change problem, therefore they can be solved with the 
standard finite difference techniques. 

5. INVERSE SOLUTION BY CONJUGATE 

GRADIENT METHOD 

In this section an algorithm is presented for solving 
the inverse heat conduction problem described pre- 
viously with the conjugate gradient method. The 
method is stable and converges very fast if some infor- 
mation is available for the final time condition of the 
unknown function hc(tfj. In this study, an estimate 



is made for the final time condition of h,(t,-) in the 
following manner. 

The mold region being very thin. we assume a linear 
variation of temperature (i.e. constant temperature 
gradient) within the mold for each time step and com- 
pute the gradient 8TJr?x using equation (1 b) and the 
measured data Y, at x = .x, . Knowing this gradient. 

the interface ten~perature is determined from equa- 
tions (Ic), (2b) and the measured data YZ at .X = .Y? 
is considered available. One can use either of the equa- 
tions (Ic) or (2b) to determine a first estimate of 
the final time condition of the contact conductance 

!r,(t,) = h:(t). 
The following iterative procedure [ 1 I] is used for 

the determination of the contact conductance 

it“ i I 
‘ =/I:-PAP”; k=O,l,Z,... 111) 

where the direction of descent Ph is determined from 

the following relation 

p” = Jo” +,,kp”-~ 1 
i (12) 

here P” ’ is the value of P at step k- 1 and J’” is the 
value of the gradient of the functional at step k. 

Different de~nition of the conjugate coeficient ;j’ 
can be found in the standard texts on mathematics. 

we choose the form [ 14. 151 

i 
” [Jfh(t)]’ dr 

+ = .L = * 

s 
” 

.. with y” = 0. (13) 

[.I’” ‘(t)]‘dr 
ii L, 

The coefficient p, which determines the step sizc~ in 

going from h; to h, ’ + ’ in equation (11) is obtained by 
minimizing J(h$* ‘) with respect to /I”, i.e. 

I ‘! mm J(lz’;:+ ‘) = mm ,_,, [[T,(h$-fl”Pk)-- Y,]> 

+[T,(ht-~“P”)- Y2J2j d6. (14aj 

First. the Taylor series expansion is used to linearize 
the right-hand side of this expression in the form 

+[7’Z(1z~)-~“AT&‘A)- Y#j dt. (14b) 

Then equation (14b) is minimized by differentiating it 
with respect to fi” and equating it equal to zero. After 
rearrangement, the following expression is obtained 
for step size ph 

(AT,(P’)[T,(h,l)- Y,] 

s 

(15j +AT~(P~~[~~(~~)- &I3 dt, 

” [AT:(P”)+A7-f(Pk)] dt 
,=” 

The tinal time condition h,(r,) determined as 
described above. i.e. h:(t) = h,(t,) is used to start the 
iterations. 

Once P” is computed from equation f 12) and [j’ 
from equation (15), the iterative process defined by 
equation (I 1) can be applied to determine ht+’ until 
a specified stopping criterion based on the disrrrpurzc_r 
~r~~7cip~~~ described below is satisfied. 

Discrrpunq~ principk~Jhr stopping uitwiu 

If the problem involves no measurement errors, the 
traditional check condition specified as [16] 

.1(/I;+ ‘) < 8, (16) 

where ,sr is a small specified number, could be used. 
However, the observed temperature data contain 
measurement errors ; as a result, the inverse solution 
will tend to approach the perturbed input data and 
the solution will exhibit oscillatory behavior as the 
number of iterations is increased [t I]. Compu- 
tational experience shows that it is advisable to use 
the discrepancy principle [ 17, 181 for terminating the 
iteration process. The discrepancy principle that 
establishes the value of c from Cquation (3) by 
assuming (T, - Y,) 2 (7’- Y?) z u. is givren in the 
form 

where c is the standard deviation of the measurement 
error. This value of c is then used as the stopping 

criterion, i.e. 

J(lz;+ ‘) < E’. (17bj 

6. THE ALGORITHM 

The algorithm for the computational procedure of 
the iterative scheme starting from the kth iteration is 
summarized as : 

STEP (I) h:(t) is available at the kth iteration. Solve 
the direct problem given by equations (1) and (2) and 
compute T,(.r, f) and T,(x, tj. 

STEP (2) Knowing Tr,(x. t). T,(x, I) and measured 

temperatures Y, , Y,, solve the adjoint problem 
defined by equations (8). (9) and obtain the adjoint 

variables i., (x, r) and Lr(x, t). 
STEP (3) Knowing I,(h, r), i&h, tj and T,,(h, fj, 

T’(b, t), Compute the gradient of the fUnCtiOna], J’(r), 
from equation ( 10). 

STEP (4) Knowing J’(t), first compute yk from 
equation (13) and then compute the direction of 

descent P’; from equation (12). 
STEP (5) Knowing the direction of descent Pi, 

solve the sensitivity problem given by equations (4j, 
(5) and determine the sensitivity functions AT,(P’) 

and AT,(Y’). 
STEP (6) Knowing AT,(P”) and AT,(P’j, com- 

pute step size [j’ from equation ( I 5 1. 
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STEP (7) Knowing step size /I’, compute new con- 

tact conductance ht+ ’ (t) from equation (11). 
STEP (8) Check if the stopping criterion given by 

equation (17) satisfied. 
STEP (9) If not, repeat the above calculational 

procedure until the stopping criterion given by equa- 
tion (17) is satisfied. 

7. RESULTS AND DISCUSSIONS 

To illustrate the accuracy of the present approach in 
predicting h;(t) with inverse analysis, we first examine 
two very strict test cases involving a triangular and a 
step contact conductance function and then examine 
the case studied in ref. [lo]. 

Here we consider the mold and casting are initially 

at constant temperatures T, and T,,,, respectively, and 
the thermal properties of the liquid and solid phases 
are constant and equal. The following physical quan- 
tities are used in the calculation [IO] : 

k P = 388 Wm-’ “C-’ k =213Wm-‘“C-’ c 

c,=403Jkg-‘“C-l c,=1210Jkg-‘“C-’ 

pp = 8940 kg rn- 3 pE = 2700 kg m- 3 

h, = 2000Wm~*“C~’ T, = 20°C b = 6x 10m3m 

a = 0.206 m L = 4.02 x 1O’J kg- ’ T, = 660°C. 

The total measurement is taken over a period of 80 s 
with the measurement time step, At = 1 s. Thus 80 
temperature readings per thermocouple over the total 
measurement time. The space steps for mold region, 
Axp, and for casting region, Ax,, are taken as 3 x lo- 3 
m and 1.6 x 1O-3 m, respectively. One thermocouple 
is placed at the outer surface of the mold and the 
other is located inside the casting region at a location 
1.6 x lo- 3 m from the interface. 

The measured temperature data, Y, are generated 
by adding a standard deviation o to the simulated 
exact temperature, given by 

Y meas”& = Yexact + we (18) 

where the random variable w is calculated by the 
IMSL subroutine DRNNOR [19]. In the present cal- 
culation the range of w is chosen as -2.576 < 
w < 2.576 which represents the 99% confidence 
bound for the measurement temperature. 

We present below three numerical experiments in 
predicting the timewise variation of h,(t) by inverse 
analysis 

Case I. Triangular jump in h,(t). 
The interface contact conductance h,(t) is assumed 

to vary in the form 

300+ 15t O<t<20 

200- 7(1-55) 20 < t < 55 (19) 

200 55 < t < 80 

which represents a triangular function with the jump, 

h,(O) = 300, at t = 0. 
The inverse solutions for cr = 0.0 (exact), c = 1.0 

and a = 2.0 are obtained by the conjugate gradient 

approach as shown in Figs. 2, 3 and 4, respectively. 
With no measurement error, the estimated contact 
conductance is very close to the exact value as given 

1 
100; . . , . . , , . . 1 

0 20 40 60 80 

time ) aec 

FIG. 2. Estimated contact conductance for case 1 with no 
measurement errors. 

700 

time , set 

FIG. 3. Estimated contact conductance for case 1 with 
measurement errors u = 1.0. 
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tine ( see 

FIG. 4. Estimated contact conductance for case 1 with 
measurement errors D = 2.0. 
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FIG. 5. Estimated contact conductance for case 2 with no 
measurement errors. 

in Fig. 2. As measurement error is included, the accu- 
racy of the inverse solution decreases, as shown in 

Figs. 3 and 4. We note that, even with (r = 2.0 the 

results are still good as shown in Fig. 4. 
Case 2. Step function variation in h,(t). 
The interface contact conductance h,(t) is assumed 

in the form 

h,(t) = 
600 0 < t d 40 
o 

40 < t < 80 
(20) 

which is a step jump function with h,(O) = 600 at t = 0 
and represents a very strict test for the accuracy of the 
prediction. 

The inverse solutions for 0 = 0.0 (exact) and 0 = I .O 

are shown in Figs. 5 and 6, respectively. For the case 
0 = 0.0, slight deviation of the results occurs at the 
sharp corners only. but the agreement is very good 
for the rest of the function. Results are still good for 
the case 0 = 1 .O. 

Case 3. A polynomial variation in h,(t). 
To compare the conjugate gradient method with 

the least square method utilizing the Levenberg- 
Marquardt algorithm, the interface conductance h,(t) 

-200 
0 20 40 60 60 

rime , set 

FIG. 6. Estimated contact conductance for case 2 with 
measurement errors 6 = 1.0. 

time , set 

FIG. 7. Variation of h,(t) with time 

is assumed to be a cubic polynomial in time, given in 

the form [lo] 

h,(t) = A, +Azt+A3t2+A4t’ for t < zL (2la) 

and 

h,(t) = h, for t 3 r2 (21b) 

where the coefficients A,. i = 1, 4 are established by 
the following requirements based on some physical 
considerations 

h,(t) =h,, at 1 =0 (22a) 

(22b) 

h,(t) = h, at E = s2 (22c) 

r?h,(t) 
---- = 0 at 1 = tl. 
?t 

(22d) 

The physical significance of the four parameters ho, 

h,, 7, and zZ is illustrated in Fig. 7. The values of 
these four parameters characterizing the interface con- 
ductance h,(r) are taken as h, = 50 W m mm2 “C ‘. 
11,=200Wm~“-‘C’,z, =20sandr,=55s,Figure 

8 shows our prediction of the functional form of h,(t) 

0-l , . . I . I * . I 
0 20 40 60 8” 

time , xc 

FIG. 8. Estimated contact conductance for case 3 with 
measurement errors (J = 1 .O. 
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by the conjugate gradient method for the case Q = 1 .O 
and its comparison with the exact values of h,(t). 
Clearly, the prediction is in excellent agreement with 

the exact h,(t). 
The foregoing comparison shows that the function 

estimation approach utilizing the conjugate gradient 
method requires less computer time, no a priori 
assumption in the functional form of the unknown 
quantity and the method is less sensitive to the 
measurement errors. 

In the function estimation approach considered 
here a total of 80 unknowns are estimated to establish 
the unknown function, whereas in the least squares 
method four parameters were used to represent the 
function. The computer time requirement with the 
present approach was an order of magnitude less than 
that for the least squares method. 

8. CONCLUSION 

The conjugate gradient method which utilizes the 
function estimation approach is used to solve the 
inverse solidification problem to determine the 
unknown timewise variation of the contact con- 
ductance between the mold and casting region. The 
results show that the conjugate gradient method 
requires much less computer time than the least squares 
method, less sensitive to the measurement errors and 
does not require a prior information for the func- 
tional form of the unknown quantity. 
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METHODE DES GRADIENTS CONJUGUES POUR DETERMINER LA CONDUCTANCE 
INCONNUE DE CONTACT PENDANT LE MOULAGE DUN METAL 

R&un&-La formation d’un matelas d’air entre le metal et le moule pendant la coulee tree une resistance 
thermique qui reduit les transferts thermiques et les vitesses de solidification. On developpe la mtthodologie 
de solution inverse basee sur la methode des gradients conjugues pour estimer la variation de la resistance 
variable du matelas d’air a partir des mesures de temperature avec des thermocouples dans la region liquide 
et a la surface du moule exteme. L’avantage de cette mtthode est de ne pas supposer une forme fonctionnelle 
de la grandeur inconnue, puisque la solution determine automatiquement la forme fonctionnelle sur le 
domaine specific. La mtthode est stable et elle converge sur un ordre de grandeur, plus vite que la mithode 

des moindres car&. 
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EIN VERFAHREN MIT KONJUGIERTEN GRADIENTEN ZUR BESTIMMUNG DES 
UNBEKANNTEN KONTAKTWIDERSTANDES BEIM GIESSEN VON METALLEN 

Zusammenfassung-Beim GieBen von Metallen entsteht durch die Ausbildung eines Luftspaltes zwischen 
der G&form und dem fliissigen Metall ein therm&her Widerstand. der den Warmeiibergang und die 
Verfestigungsgeschwindigkeit reduziert. In der vorliegenden Arbeit wird auf der Grundlage des Verfahrens 
der konjugierten Gradienten eine umgekehrte Methode zur Bestimmung der zeithchen Veranderung des 
Widerstandes durch den Luftspalt entwickelt. Die Grundlage daftir bildet die Messung der zeitlich ver- 
Bnderten Temperaturen mit Hilfe von Thermoelementen im GuBgebiet und an der BuBeren Obertlkhe der 
G&form. Der Vorteil des Verfahrens mit konjugierten Gradienten besteht darin, daR nicht von vornherein 
eine spezielle Funktionsform fiir die unbekannte GriilJe angenommen werden muB. Diese Form ergibt sich 
automatisch fur den angegebenen Bereich. Dariiberhinaus ist das Verfahren stabil und konvergiert urn 

GroBenordnungen schneller als die iibliche Fehlerquadratmethode. 

METOA COHPRIKEHHbIX I-PAAMEHTOB aJIR OTIPEAEJTEHHR KOHTAKTHOfi 
HPOBO~HMOCTH B HPOHECCE JIMTblI METAJIJ’IOB 

AHHoTaunn-O6pa3osaHee B03nyumbIX 3a3opoBMemnyOTnIlBKOii B KoKmeMB npoueccene'rba MeTan- 

FOB co3naeT TerInoBoeconpoTeeneaue,ceamaIo~ee c~opocm TennonepeHoca II 3aTsepnesaHEix. B nac- 
roameM kiccneAoBaHm paspa6oTaHa MeTo&l&iKa peIuema o6pamxol sanam Ha OcHoBe Mefona 
ConpameHHbrxrpanHeHToB, n03BommIuax 0uemiTb ~3rdeHemieconpoTHBnemis Bo3nyuwbIX 3a3opoeco 

Bp%leHeM EiCXOZlll A3 &t3MepeHHii TeMIIepaTypblC HCnOnb30BaHHeM TepMO~ap,~OMeUIeHHbIX B o6nacrn 
OT~UBKH II Ha BHemHeii rpawiue KOKN~S. FIpeabiyluecmo npea.aoxerinoro h4erona COCTOUT B OTCYTCT- 

BIlH Heo6xonnMocTn n~~BapaTe~b"OrOn~~nOnOmeHaKO KOHKPeTHOi?+yHK4NOHanbHOti'$OpMeHeU3- 

Becmoii BenwImbI, noCKonbKy peruewe arsToh4aTmecm 0npenenaeT ee B 3anawoB o6nacm. KpoMe 

TOTO,IlCI,OnbJyeMbIii MeTOn IlBnPeTCIl yCTOihBbIM M CXOAHTCR "a nOpKAOK 6bmpee,wm MeTOU Hall- 

MeHbUIHX KBa.DpZiTOB. 


